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Split extensions of groups

Let N G H
k e

s
be a diagram in the category of groups.

The diagram is a split extension if

1. k is the kernel of e,

2. e is the cokernel of k,

3. es = 1.

Every element g 2 G can be written

g = g · (se(g�1) · se(g))

= (g · se(g�1)) · se(g).

Notice that g · se(g�1) is sent by e to 1.

Thus there exists an n 2 N such that k(n) = g · se(g�1).
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Split extensions of groups

Let N G H
k e

s
be a split extension of groups.

For each g 2 G there exists an n 2 N such that g = k(n) · se(g).

Suppose g = k(n) · s(h) and apply e to both sides.

e(g) = e(k(n) · s(h))

= 1 · es(h)

= h.

Thus if g = k(n) · s(h), it must be that h = e(g).

Furthermore if

k(n1) · se(g) = g = k(n2) · se(g),

then n1 = n2.
3
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Split extensions of groups

Let N G H
k e

s
be a split extension of groups.

Consider the map ' : N ⇥H ! G, '(n, h) = k(n) · s(h).

This map is a bijection of sets and so has an inverse '
�1.

N ⇥H inherits a group structure from ',

(n1, h1) · (n2, h2) = '
�1('(n1, h1)'(n2, h2)),

turning ' into an isomorphism of groups.

Intuitively (n1, h1) · (n2, h2) is the element sent by ' to

k(n1) · s(h1) · k(n2) · s(h2).

There is an alternative way to view this multiplication.
4
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Semidirect products of groups

Let N G H
k e

s
be a split extension of groups and let

'(n, h) = k(n)s(h).

For each g 2 G, there is a unique n 2 N such that g = k(n) · se(g).

The set map q = ⇡1'
�1 selects this unique n, which is to say that

g = kq(g) · se(g).

We can use q to define the following multiplication on N ⇥H

(n1, h1) · (n2, h2) = (n1 · q(s(h1)k(n2)), h1h2).

The map ' will send (n1 · q(s(h1)k(n2)), h1h2) to

k(n1) · s(h1) · k(n2) · s(h2)

and so yields the same multiplication. 5
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Actions

Let N G H
k e

s
be a split extension, '(n, h) = k(n)s(h) and

q = ⇡1'
�1.

The map ↵(h, n) = q(s(h)k(n)) is an action of H on N .

An action of H on N is a map � : H ! Aut(N).

They corresponds via currying to maps ↵ : H ⇥N ! N satisfying

1. ↵(h, n1n2) = ↵(h, n1)↵(h, n2),

2. ↵(h1h2, n) = ↵(h1,↵(h2, n)),

3. ↵(h, 1) = 1,

4. ↵(1, n) = n.

6
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Semidirect products of groups

Let N G H
k e

s
be a split extension, '(n, h) = k(n)s(h) and

q = ⇡1'
�1.

Given any action ↵ of H on N

(n1, h1) · (n2, h2) = (n1 · ↵(h1, n2), h1h2)

turns N ⇥H into a group.

We call the resulting group a semidirect product and write N o↵ H.

A semidirect product N o↵ H naturally gives a split extension

N N o↵ H H
k e

s

where k(n) = (n, 1), e(n, h) = h and s(h) = (1, s).
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Schreier extensions of monoids

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

g = k(n) · s(h)

for unique n 2 N and h 2 H.

Thus the above results apply to any split extension of monoids

N G H
k e

s

where each g can be written g = k(n) · s(h) for unique n and h.

Such split extensions we call Schreier extensions.

8
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A weaker notion

There exist split extensions of monoids which are not Schreier.

This a↵ords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

N G H
k e

s
,

in which each g 2 G can be written g = k(n) · s(h) for some n and h.

Is there any reason to think that this might be worth studying?

9
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Topological spaces as monoids

Let X be a topological space and O(X) its lattice of opens.

There is a natural way to associate a monoid to a topological space.

• O(X) is closed under binary intersection.

• Since X 2 O(X), the binary intersection has an identity.

Thus (O(X),\, X) is a monoid.

Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call frames.

10
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Artin glueings of topological spaces

Let N = (|N |,O(N)) and H = (|H|,O(H)) be topological spaces.

What topological spaces G = (|G|,O(G)) satisfy that H is an open

subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N .

It must be that |G| = |N | t |H|.

Each open U 2 O(G) then corresponds to a pair (UN , UH) where

UN = U \N and UH = U \H.

Thus O(G) is isomorphic to a frame LG containing certain pairs

(UN , UH).
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Artin glueings of topological spaces

For each U 2 O(H) there is a largest open V 2 O(N) such that

(V, U) occurs in LG.

Let fG : O(H) ! O(N) be a function which assigns to each

U 2 O(H) the largest V .

This function preserves finite meets.

We have that (V, U) 2 LG if and only if V ✓ f(U).

Given any finite-meet preserving map f : O(H) ! O(N) we can

construct a frame Gl(f) as above.

This frame Gl(f) will satisfy the required properties and we call it the

Artin glueing of f .
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Artin glueings as weakly Schreier extensions

Let N and H be frames and let f : H ! N preserve finite meets.

The following is a split extension of monoids

N Gl(f) H
k e

s

where k(n) = (n, 1), e(n, h) = h and s(h) = (f(h), h).

Since (n, h) 2 Gl(f) means n  f(h) we have that

(n, h) = (n, 1) ^ (f(h), h)

= k(n) ^ s(h).

The diagram is weakly Schreier and it can be shown it’s not Schreier.

All weakly Schreier extensions of frames correspond to Artin glueings*
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Weakly Schreier extensions

Let N G H
k e

s
be a weakly Schreier extension and let

'(n, h) = k(n) · s(h).

The map ' is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

(n1, h1) ⇠ (n2, h2) () k(n1) · s(h1) = k(n2) · s(h2).

As in the group case, ' induces a multiplication on N ⇥H/E.

[n1, h1] · [n2, h2] = '
�1('([n1, h1])'([n2, h2]))

Intuitively [n1, h1] · [n2, h2] is the equivalence class mapped by ' to

k(n1) · s(h1) · k(n2) · s(h2).
14
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Weakly Schreier extensions

Let N G H
k e

s
be weakly Schreier, let '(n, h) = k(n) · s(h)

and let E be the equivalence relation induced by '.

A map q : G ! N satisfying that for all g 2 G

g = kq(g) · se(g),

we call a Schreier retraction.

The class [n1 · q(s(h1)k(n2)), h1h2] is sent by ' to

k(n1) · s(h1) · k(n2) · s(h2)

for any Schreier retraction q.

Thus the multiplication is again determined by a map

↵(h, n) = q(s(h)k(n)).
15
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Admissible equivalence relations

Let N G H
k e

s
be weakly Schreier, let '(n, h) = k(n) · s(h)

and let E be the equivalence relation induced by '.

The equivalence relation E satisfies the following properties.

1. (n1, 1) ⇠ (n2, 1) implies n1 = n2,

2. (n1, h1) ⇠ (n2, h2) implies h1 = h2,

3. (n1, h) ⇠ (n2, h) implies (nn1, h) ⇠ (nn2, h),

4. (n1, h) ⇠ (n2, h) implies (n1, hh
0) ⇠ (n2, hh

0).

Suppose h has a right inverse h
⇤.

• (n1, h) ⇠ (n2, h) implies (n1, hh
⇤) ⇠ (n2, hh

⇤).

• (n1, 1) ⇠ (n2, 1) implies n1 = n2.

Thus for a group the quotient must always be discrete.

Any equivalence relation satisfying the above we call admissible.
16
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4. (n1, h) ⇠ (n2, h) implies (n1, hh
0) ⇠ (n2, hh

0).

Suppose h has a right inverse h
⇤.

• (n1, h) ⇠ (n2, h) implies (n1, hh
⇤) ⇠ (n2, hh

⇤).

• (n1, 1) ⇠ (n2, 1) implies n1 = n2.

Thus for a group the quotient must always be discrete.

Any equivalence relation satisfying the above we call admissible.
16



Compatible actions

Let N G H
k e

s
be weakly Schreier, q a Schreier retraction and

↵(h, n) = q(s(h)k(n)).

Then ↵ satisfied the following properties.

1. (n1, h) ⇠ (n2, h) implies [n1↵(h, n), h] = [n2↵(h, n), h],

2. (n, h0) ⇠ (n0
, h

0) implies [↵(h, n), hh0] = [↵(h, n0), hh0],

3. [↵(h, nn0), h] = [↵(h, n) · ↵(h, n0), h],

4. [↵(hh0, n), hh0] = [↵(h,↵(h0, n)), hh0],

5. [↵(h, 1), h] = [1, h],

6. [↵(1, n), 1] = [n, 1].

Since groups always have the discrete quotient, ↵ must be an action.

Any map ↵ satisfying this with respect to an admissible quotient, we

call a compatible action.
17
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Characterizing weakly Schreier extensions

Let E be an admissible equivalence relation on N ⇥H and let ↵ be a

compatible action.

Theorem
The set N ⇥H/E equipped with multiplication

[n1, h1] · [n2, h2] = [n1↵(h1, n2), h1h2],

is a monoid.

Theorem
The diagram

N N ⇥H/E H
k e

s

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly

Schreier extension.

The processes described in this talk are inverses. 18
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Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on N ⇥H given by

(n, h) ⇠ (n0
, h) for all n 2 N and 1 6= h 2 H.

This quotient is admissible and can be identified with N t (H � {1})

where

• [n, 1] 7! n

• [n, h] 7! h when h 6= 1.

19



Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on N ⇥H given by

(n, h) ⇠ (n0
, h) for all n 2 N and 1 6= h 2 H.

This quotient is admissible and can be identified with N t (H � {1})

where

• [n, 1] 7! n

• [n, h] 7! h when h 6= 1.

19



Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on N ⇥H given by

(n, h) ⇠ (n0
, h) for all n 2 N and 1 6= h 2 H.

This quotient is admissible and can be identified with N t (H � {1})

where

• [n, 1] 7! n

• [n, h] 7! h when h 6= 1.

19



Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Every function ↵ : N ⇥H ! N is compatible with the quotient.

Recall that [n, h] · [n0
, h

0] = [n · ↵(h, n0), hh0].

Because of the quotient n · ↵(h, n0) is irrelevant whenever hh0 6= 1.

When hh
0 = 1 this means h = 1 and so n↵(h, n0) = nn

0.

Thinking in terms of N t (H � {1}) multiplication becomes

• n · n
0 the usual product in N ,

• h · h
0 the usual product in H, and

• n · h = h · n = h

20
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The coarsest quotient

Can we relax the condition that H contain no left units?

Consider the quotient whereby

• (n, h) ⇠ (n0
, h) if h is not a left unit,

• (n, h) ⇠ (n0
, h) ) n = n

0 if h is a left unit.

This is the coarsest admissible quotient on N ⇥H.

When does there exist a compatible action?

21
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Compatible actions

Let N and H be monoids and Q the coarsest admissible quotient.

The set L(H) of left-units of H forms a submonoid of H.

The complement L(H) of L(H) forms a right ideal.

• It is clear it is closed under multiplication.

• If x 2 L(H) and h 2 H, then (xh)y = 1 implies that hy is a right

inverse of x.

Theorem
If L(H) is a two-sided ideal, each map ↵ : H ⇥N ! N in which

↵|L(H)⇥N is an action of L(H) on N , is compatible with the coarse

quotient Q. Otherwise, no map ↵ is compatible with Q.*

22
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Intuition

Let N and H be monoids and Q the coarsest admissible quotient.

To illustrate the general idea lets looks at this requirement

[↵(hh0, n), hh0] = [↵(h,↵(h0, n)), hh0].

If hh0 is a left unit then ↵(hh0, n) = ↵(h,↵(h0, n)).

Additionally h and h
0 must be left units as well.

So with respect to this requirement (and all others) ↵ behaves like an

action of L(H) on N .

23
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Intuition

Otherwise, if hh0 is not a left unit then things almost work completely

as most of the requirements are immediately satisfied.

However suppose L(H) is not a two-sided ideal.

Then there exists x 2 L(H) and y 2 L(H) such that xy 2 L(H).

The requirement

(n, y) ⇠ (n0
, y) implies [↵(x, n), xy] = [↵(x, n0), xy]

gives that ↵(x, n) = ↵(x, n0) for all n, n0
2 N .

We also know that ↵(x, 1) = 1 and so ↵(x, n) = 1 for all n 2 N

Finally consider

[n, 1] = [↵(1, n), 1] = [↵(xx�1
, n), xx�1] = ↵(x,↵(x�1

, n), 1) = [1, 1].
24
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Examples

This two sided property holds whenever H is

• H is finite,

• H is commutative,

• H is a group,

• H has no inverses at all

• H is a monoid of n⇥ n matrices over a field

The result can be generalised where L(H) is replaced with any prime

ideal.
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