Characterising Weakly Schreier Extensions

Peter Faul
peter@faul.io
University of Cambridge

Leicester 2019

Split extensions of groups

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a diagram in the category of groups.
The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k.
3. $e s=1$

Every element $g \in G$ can be written

Notice that $g \cdot \operatorname{se}\left(g^{-1}\right)$ is sent by e to 1

Thus there exists an $n \in N$ such that $k(n)=g \cdot \operatorname{se}\left(g^{-1}\right)$.

Split extensions of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a diagram in the category of groups.
The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k,
3. $e s=1$.

Every element $g \in G$ can be written

Notice that $g \cdot \operatorname{se}\left(g^{-1}\right)$ is sent by e to 1
Thus there exists an $n \in N$ such that $k(n)=g \cdot \operatorname{se}\left(g^{-1}\right)$.

Split extensions of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a diagram in the category of groups.
The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k,
3. $e s=1$.

Every element $g \in G$ can be written

$$
\begin{aligned}
g & =g \cdot\left(\operatorname{se}\left(g^{-1}\right) \cdot \operatorname{se}(g)\right) \\
& =\left(g \cdot s e\left(g^{-1}\right)\right) \cdot \operatorname{se}(g) .
\end{aligned}
$$

Notice that $g \cdot \operatorname{se}\left(g^{-1}\right)$ is sent by e to 1 .
Thus there exists an $n \in N$ such that $k(n)=g \cdot \operatorname{se}\left(g^{-1}\right)$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a diagram in the category of groups.
The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k,
3. $e s=1$.

Every element $g \in G$ can be written

$$
\begin{aligned}
g & =g \cdot\left(\operatorname{se}\left(g^{-1}\right) \cdot \operatorname{se}(g)\right) \\
& =\left(g \cdot s e\left(g^{-1}\right)\right) \cdot \operatorname{se}(g) .
\end{aligned}
$$

Notice that $g \cdot \operatorname{se}\left(g^{-1}\right)$ is sent by e to 1 .
Thus there exists an $n \in N$ such that $k(n)=g \cdot \operatorname{se}\left(g^{-1}\right)$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a diagram in the category of groups.
The diagram is a split extension if

1. k is the kernel of e,
2. e is the cokernel of k,
3. $e s=1$.

Every element $g \in G$ can be written

$$
\begin{aligned}
g & =g \cdot\left(\operatorname{se}\left(g^{-1}\right) \cdot \operatorname{se}(g)\right) \\
& =\left(g \cdot s e\left(g^{-1}\right)\right) \cdot \operatorname{se}(g) .
\end{aligned}
$$

Notice that $g \cdot \operatorname{se}\left(g^{-1}\right)$ is sent by e to 1 .
Thus there exists an $n \in N$ such that $k(n)=g \cdot \operatorname{se}\left(g^{-1}\right)$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
For each $g \in G$ there exists an $n \in N$ such that $g=k(n) \cdot \operatorname{se}(g)$
Suppose $g=k(n) \cdot s(h)$ and apply e to both sides.

Thus if $g=k(n) \cdot s(h)$, it must be that $h=e(g)$
Furthermore if

$$
k\left(n_{1}\right) \cdot \operatorname{se}(g)=g=k\left(n_{2}\right) \cdot \operatorname{se}(g),
$$

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
For each $g \in G$ there exists an $n \in N$ such that $g=k(n) \cdot s e(g)$.
Suppose $g=k(n) \cdot s(h)$ and apply e to both sides.

Thus if $g=k(n) \cdot s(h)$, it must be that $h=e(g)$.
Furthermore if

$$
k\left(n_{1}\right) \cdot \operatorname{se}(g)=g=k\left(n_{2}\right) \cdot s e(g)
$$

then $n_{1}=n_{2}$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
For each $g \in G$ there exists an $n \in N$ such that $g=k(n) \cdot \operatorname{se}(g)$.
Suppose $g=k(n) \cdot s(h)$ and apply e to both sides.

$$
\begin{aligned}
e(g) & =e(k(n) \cdot s(h)) \\
& =1 \cdot e s(h) \\
& =h .
\end{aligned}
$$

Thus if $g=k(n) \cdot s(h)$, it must be that $h=e(g)$.
Furthermore if
$k\left(n_{1}\right) \cdot \operatorname{se}(g)=g=k\left(n_{2}\right) \cdot \operatorname{se}(g)$,
then $n_{1}=n_{2}$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
For each $g \in G$ there exists an $n \in N$ such that $g=k(n) \cdot \operatorname{se}(g)$.
Suppose $g=k(n) \cdot s(h)$ and apply e to both sides.

$$
\begin{aligned}
e(g) & =e(k(n) \cdot s(h)) \\
& =1 \cdot e s(h) \\
& =h .
\end{aligned}
$$

Thus if $g=k(n) \cdot s(h)$, it must be that $h=e(g)$.
Furthermore if

$$
k\left(n_{1}\right) \cdot \operatorname{se}(g)=g=k\left(n_{2}\right) \cdot s e(g),
$$

then $n_{1}=n_{2}$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
For each $g \in G$ there exists an $n \in N$ such that $g=k(n) \cdot \operatorname{se}(g)$.
Suppose $g=k(n) \cdot s(h)$ and apply e to both sides.

$$
\begin{aligned}
e(g) & =e(k(n) \cdot s(h)) \\
& =1 \cdot e s(h) \\
& =h .
\end{aligned}
$$

Thus if $g=k(n) \cdot s(h)$, it must be that $h=e(g)$.
Furthermore if

$$
k\left(n_{1}\right) \cdot s e(g)=g=k\left(n_{2}\right) \cdot s e(g)
$$

then $n_{1}=n_{2}$.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$
This map is a bijection of sets and so has an inverse φ^{-1}
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\varphi^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right),
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)$ is the element sent by φ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right) .
$$

There is an alternative way to view this multiplication.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$.
This map is a bijection of sets and so has an inverse φ^{-1}
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)-0^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right)
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)$ is the element sent by φ to

$$
h\left(m_{1}\right) \cdot s\left(h_{1}\right) \cdot h_{1}\left(m_{2}\right) \cdot s\left(h_{2}\right)
$$

There is an alternative way to view this multiplication.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$.
This map is a bijection of sets and so has an inverse φ^{-1}.
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\varphi^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right),
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, n_{1}\right)$) ($\left.n_{2}, n_{2}\right)$ is the element sent by φ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

There is an alternative way to view this multiplication.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \stackrel{e}{\underset{s}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$.
This map is a bijection of sets and so has an inverse φ^{-1}.
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\varphi^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right)
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)$ is the element sent by φ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

There is an alternative way to view this multiplication.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$.
This map is a bijection of sets and so has an inverse φ^{-1}.
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\varphi^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right)
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)$ is the element sent by φ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

There is an alternative way to view this multiplication.

Split extensions of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups.
Consider the map $\varphi: N \times H \rightarrow G, \varphi(n, h)=k(n) \cdot s(h)$.
This map is a bijection of sets and so has an inverse φ^{-1}.
$N \times H$ inherits a group structure from φ,

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\varphi^{-1}\left(\varphi\left(n_{1}, h_{1}\right) \varphi\left(n_{2}, h_{2}\right)\right)
$$

turning φ into an isomorphism of groups.
Intuitively $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)$ is the element sent by φ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

There is an alternative way to view this multiplication.

Semidirect products of groups

Let $N \stackrel{k}{\longleftrightarrow} G \underset{s}{\stackrel{e}{\longleftrightarrow}} H$ be a split extension of groups and let $\varphi(n, h)=k(n) s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g=k(n) \cdot \operatorname{se}(g)$.
The set map $q=\pi_{1} \varphi^{-1}$ selects this unique n, which is to say that

$$
g-k g(g) \cdot \operatorname{se}(g)
$$

We can use q to define the following multiplication on $N \times H$

 $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot q\left(s\left(h_{1}\right) h_{(}\left(m_{2}\right)\right), h_{1} h_{2}\right)$The map φ will send $\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)$ to

$$
k\left(n_{1}\right) \cdot c\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot c\left(h_{2}\right)
$$

Semidirect products of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups and let $\varphi(n, h)=k(n) s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g=k(n) \cdot s e(g)$.
The set map $q=\pi_{1} \varphi^{-1}$ selects this unique n, which is to say that

$$
g=k q(g) \cdot \operatorname{se}(g) .
$$

We can use q to define the following multiplication on $N \times H$

 $\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)-\left(n_{1} \cdot a\left(c\left(h_{1}\right) k\left(n_{2}\right)\right) h_{1} h_{2}\right)$The map φ will send $\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)$ to $k\left(n_{1}\right) \cdot c\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot c\left(h_{2}\right)$

Semidirect products of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups and let $\varphi(n, h)=k(n) s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g=k(n) \cdot s e(g)$.
The set map $q=\pi_{1} \varphi^{-1}$ selects this unique n, which is to say that

$$
g=k q(g) \cdot s e(g)
$$

We can use q to define the following multiplication on $N \times H$

The map φ will send $\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)$ to $k\left(n_{1}\right) \cdot c\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot c\left(h_{2}\right)$

Semidirect products of groups

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups and let $\varphi(n, h)=k(n) s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g=k(n) \cdot s e(g)$.
The set map $q=\pi_{1} \varphi^{-1}$ selects this unique n, which is to say that

$$
g=k q(g) \cdot s e(g)
$$

We can use q to define the following multiplication on $N \times H$

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)
$$

Semidirect products of groups

Let $N \stackrel{k}{\stackrel{e}{\leftrightarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension of groups and let $\varphi(n, h)=k(n) s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g=k(n) \cdot s e(g)$.
The set map $q=\pi_{1} \varphi^{-1}$ selects this unique n, which is to say that

$$
g=k q(g) \cdot s e(g)
$$

We can use q to define the following multiplication on $N \times H$

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)
$$

The map φ will send $\left(n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right)$ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

and so yields the same multiplication.

Actions

Let $N \triangleright \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

$$
\text { 1. } \alpha\left(n, n_{1} n_{2}\right)=\alpha\left(n, n_{1}\right) \alpha\left(h, n_{2}\right)
$$

$$
\text { 2. } \alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right) \text {, }
$$

$$
\text { 3. } \alpha(h, 1)=1 \text {, }
$$

$$
\text { 4. } \alpha(1, n)=n \text {. }
$$

Actions

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying
\square

1. $\alpha\left(n, n_{1} n_{2}\right)=\alpha\left(n, n_{1}\right) \alpha\left(n, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right)$,
3. $\alpha(h, 1)=1$,
4. $\alpha(1, n)=n$.

Actions

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

1. $\alpha\left(h, n_{1} n_{2}\right)=\alpha\left(h, n_{1}\right) \alpha\left(h, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right)$.
3. $\alpha(h, 1)=1$,
4. $\alpha(1, n)=n$.

Actions

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

1. $\alpha\left(h, n_{1} n_{2}\right)=\alpha\left(h, n_{1}\right) \alpha\left(h, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=$
3. $\alpha(1, n)=n$.

Actions

Let $N \triangleright \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

1. $\alpha\left(h, n_{1} n_{2}\right)=\alpha\left(h, n_{1}\right) \alpha\left(h, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right)$,

Actions

Let $N \triangleright \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

1. $\alpha\left(h, n_{1} n_{2}\right)=\alpha\left(h, n_{1}\right) \alpha\left(h, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right)$,
3. $\alpha(h, 1)=1$,

Actions

Let $N \triangleright \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

The map $\alpha(h, n)=q(s(h) k(n))$ is an action of H on N.
An action of H on N is a map $\beta: H \rightarrow \operatorname{Aut}(N)$.
They corresponds via currying to maps $\alpha: H \times N \rightarrow N$ satisfying

1. $\alpha\left(h, n_{1} n_{2}\right)=\alpha\left(h, n_{1}\right) \alpha\left(h, n_{2}\right)$,
2. $\alpha\left(h_{1} h_{2}, n\right)=\alpha\left(h_{1}, \alpha\left(h_{2}, n\right)\right)$,
3. $\alpha(h, 1)=1$,
4. $\alpha(1, n)=n$.

Semidirect products of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

Given any action α of H on N

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right)
$$

turns $N \times H$ into a group.

We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$

A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension
where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(1, s)$.

Semidirect products of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

Given any action α of H on N

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right)
$$

turns $N \times H$ into a group.
We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.
A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension
where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(1, s)$.

Semidirect products of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

Given any action α of H on N

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right)
$$

turns $N \times H$ into a group.
We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.
A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension
where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(1, s)$.

Semidirect products of groups

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a split extension, $\varphi(n, h)=k(n) s(h)$ and $q=\pi_{1} \varphi^{-1}$.

Given any action α of H on N

$$
\left(n_{1}, h_{1}\right) \cdot\left(n_{2}, h_{2}\right)=\left(n_{1} \cdot \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right)
$$

turns $N \times H$ into a group.
We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.
A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension

$$
N \stackrel{k}{\rightleftarrows} N \rtimes_{\alpha} H \underset{s}{\stackrel{e}{\rightleftarrows}} H
$$

where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(1, s)$.

Schreier extensions of monoids

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$
g=k(n) \cdot s(h)
$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids
where each g can be written $g=k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call Schreier extensions.

Schreier extensions of monoids

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$
g=k(n) \cdot s(h)
$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids
where each g can be written $g=k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call

Schreier extensions of monoids

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$
g=k(n) \cdot s(h)
$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$
N \stackrel{k}{\rightleftarrows} G \stackrel{e}{\stackrel{\stackrel{e}{s}}{\rightleftarrows}} H
$$

where each g can be written $g=k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call

Schreier extensions of monoids

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$
g=k(n) \cdot s(h)
$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$
N \stackrel{k}{\rightleftarrows} G \stackrel{e}{\stackrel{\stackrel{e}{s}}{\rightleftarrows}} H
$$

where each g can be written $g=k(n) \cdot s(h)$ for unique n and h.
Such split extensions we call Schreier extensions.

A weaker notion

There exist split extensions of monoids which are not Schreier.

This affords some flexibility not present in the group case.
A weakly Schreier extension is a split extension
in which each $g \in G$ can be written $g=k(n) \cdot s(h)$ for some n and h.

Is there any reason to think that this might be worth studying?

A weaker notion

There exist split extensions of monoids which are not Schreier.
This affords some flexibility not present in the group case.
A weakly Schreier extension is a split extension
in which each $g \in G$ can be written $g=k(n) \cdot s(h)$ for some n and h.
Is there any reason to think that this might be worth studying?

A weaker notion

There exist split extensions of monoids which are not Schreier.
This affords some flexibility not present in the group case.
A weakly Schreier extension is a split extension

$$
N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H,
$$

in which each $g \in G$ can be written $g=k(n) \cdot s(h)$ for some n and h.
Is there any reason to think that this might be worth studying?

A weaker notion

There exist split extensions of monoids which are not Schreier.
This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

$$
N \stackrel{k}{\rightleftarrows} G \stackrel{e}{\stackrel{e}{\rightleftarrows}} H,
$$

in which each $g \in G$ can be written $g=k(n) \cdot s(h)$ for some n and h.
Is there any reason to think that this might be worth studying?

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid

Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid

Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.
There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.
Incidentally this assignment is functorial and has a reflection

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.
There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.
There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.
Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call

Topological spaces as monoids

Let X be a topological space and $\mathcal{O}(X)$ its lattice of opens.
There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.
Incidentally this assignment is functorial and has a reflection.

Monoids which behave like lattices of open sets we call frames.

Artin glueings of topological spaces

Let $N=(|N|, \mathcal{O}(N))$ and $H=(|H|, \mathcal{O}(H))$ be topological spaces.
What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open
subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N
It must be that $|G|=|N| \sqcup|H|$

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair $\left(U_{N}, U_{H}\right)$ where
$U_{N}=U \cap N$ and $U_{H}=U \cap H$

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs $\left(T_{N}, T T_{T H}\right)$

Artin glueings of topological spaces

$$
\text { Let } N=(|N|, \mathcal{O}(N)) \text { and } H=(|H|, \mathcal{O}(H)) \text { be topological spaces. }
$$

What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N
It must be that $|G|=|N| \sqcup|H|$

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair $\left(U_{N}, U_{H}\right)$ where $U_{N T}=U \cap N$ and $U_{H}=U \cap H$

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs

Artin glueings of topological spaces

Let $N=(|N|, \mathcal{O}(N))$ and $H=(|H|, \mathcal{O}(H))$ be topological spaces.
What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G|=|N| \sqcup|H|$
Each open $U \in \mathcal{O}(G)$ then corresponds to a pair $\left(U_{N}, U_{H}\right)$ where $U_{N}=U \cap N$ and $U_{H}=U \cap H$

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs

Artin glueings of topological spaces

Let $N=(|N|, \mathcal{O}(N))$ and $H=(|H|, \mathcal{O}(H))$ be topological spaces.
What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G|=|N| \sqcup|H|$.
Each open $U \in \mathcal{O}(G)$ then corresponds to a pair $\left(U_{N}, U_{H}\right)$ where $U_{N}=U \cap N$ and $U_{H}=U \cap H$.

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs

Artin glueings of topological spaces

Let $N=(|N|, \mathcal{O}(N))$ and $H=(|H|, \mathcal{O}(H))$ be topological spaces.
What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.
It must be that $|G|=|N| \sqcup|H|$.
Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_{N}, U_{H}) where $U_{N}=U \cap N$ and $U_{H}=U \cap H$.

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs

Artin glueings of topological spaces

Let $N=(|N|, \mathcal{O}(N))$ and $H=(|H|, \mathcal{O}(H))$ be topological spaces.
What topological spaces $G=(|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.
It must be that $|G|=|N| \sqcup|H|$.
Each open $U \in \mathcal{O}(G)$ then corresponds to a pair $\left(U_{N}, U_{H}\right)$ where $U_{N}=U \cap N$ and $U_{H}=U \cap H$.

Thus $\mathcal{O}(G)$ is isomorphic to a frame L_{G} containing certain pairs $\left(U_{N}, U_{H}\right)$.

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the Artin glueing of f

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can
construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can
construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can
construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the

Artin glueings of topological spaces

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_{G}.

Let $f_{G}: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.
We have that $(V, U) \in L_{G}$ if and only if $V \subseteq f(U)$.
Given any finite-meet preserving map $f: \mathcal{O}(H) \rightarrow \mathcal{O}(N)$ we can construct a frame $\mathrm{Gl}(f)$ as above.

This frame $\mathrm{Gl}(f)$ will satisfy the required properties and we call it the Artin glueing of f.

Artin glueings as weakly Schreier extensions

Let N and H be frames and let $f: H \rightarrow N$ preserve finite meets.
The following is a split extension of monoids
where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(f(h), h)$
Since $(n, h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$
(n, h)=(n, 1) \wedge(f(h), h)
$$

$$
=k(n) \wedge s(h) .
$$

The diagram is weakly Schreier and it can be shown it's not Schreier.
All weakly Schreier extensions of frames correspond to Artin glueings*

Artin glueings as weakly Schreier extensions

Let N and H be frames and let $f: H \rightarrow N$ preserve finite meets.
The following is a split extension of monoids

$$
N \stackrel{k}{\longmapsto} \mathrm{Gl}(f) \underset{s}{\stackrel{e}{\leftrightarrows}} H
$$

where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(f(h), h)$.
Since $(n, h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$
(n, h)=(n, 1) \wedge(f(h), h)
$$

The diagram is weakly Schreier and it can be shown it's not Schreier.
All weakly Schreier extensions of frames correspond to Artin glueings*

Artin glueings as weakly Schreier extensions

Let N and H be frames and let $f: H \rightarrow N$ preserve finite meets.
The following is a split extension of monoids

$$
N \stackrel{k}{\rightleftarrows} \operatorname{Gl}(f) \stackrel{e}{\stackrel{e}{\leftrightarrows}} H
$$

where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(f(h), h)$.
Since $(n, h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$
\begin{aligned}
(n, h) & =(n, 1) \wedge(f(h), h) \\
& =k(n) \wedge s(h)
\end{aligned}
$$

The diagram is weakly Schreier and it can be shown it's not Schreier.
All weakly Schreier extensions of frames correspond to Artin glueings*

Artin glueings as weakly Schreier extensions

Let N and H be frames and let $f: H \rightarrow N$ preserve finite meets.
The following is a split extension of monoids

$$
N \stackrel{k}{\rightleftarrows} \operatorname{Gl}(f) \stackrel{e}{\stackrel{e}{\leftrightarrows}} H
$$

where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(f(h), h)$.
Since $(n, h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$
\begin{aligned}
(n, h) & =(n, 1) \wedge(f(h), h) \\
& =k(n) \wedge s(h)
\end{aligned}
$$

The diagram is weakly Schreier and it can be shown it's not Schreier.
All weakly Schreier extensions of frames correspond to Artin glueings*

Artin glueings as weakly Schreier extensions

Let N and H be frames and let $f: H \rightarrow N$ preserve finite meets.
The following is a split extension of monoids

$$
N \stackrel{k}{\rightleftarrows} \mathrm{Gl}(f) \underset{s}{\stackrel{e}{\rightleftarrows}} H
$$

where $k(n)=(n, 1), e(n, h)=h$ and $s(h)=(f(h), h)$.
Since $(n, h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$
\begin{aligned}
(n, h) & =(n, 1) \wedge(f(h), h) \\
& =k(n) \wedge s(h)
\end{aligned}
$$

The diagram is weakly Schreier and it can be shown it's not Schreier.
All weakly Schreier extensions of frames correspond to Artin glueings*

Weakly Schreier extensions

Let $N \stackrel{k}{\longleftrightarrow} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a weakly Schreier extension and let
$\varphi(n, h)=k(n) \cdot s(h)$.
The map φ is by definition a surjection and so we can quotient by it.
Let E be the equivalence relation given by

As in the group case, φ induces a multiplication on $N \times H / E$.

Intuitively $\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]$ is the equivalence class mapped by $\bar{\varphi}$ to

$$
h\left(m_{1}\right) \cdot a\left(h_{1}\right) \cdot l_{1}\left(m_{2}\right) \cdot s\left(h_{2}\right)
$$

Weakly Schreier extensions

Let $N \stackrel{k}{\longleftrightarrow} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be a weakly Schreier extension and let
$\varphi(n, h)=k(n) \cdot s(h)$.
The map φ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

As in the group case, φ induces a multiplication on $N \times H / E$.

Intuitively $\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]$ is the equivalence class mapped by $\bar{\varphi}$ to

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{ }{\longleftrightarrow}} G \stackrel{e}{\rightleftarrows} H$ be a weakly Schreier extension and let $\varphi(n, h)=k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.
Let E be the equivalence relation given by

$$
\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right) \Longleftrightarrow k\left(n_{1}\right) \cdot s\left(h_{1}\right)=k\left(n_{2}\right) \cdot s\left(h_{2}\right) .
$$

As in the group case, φ induces a multiplication on $N \times H / E$.

Intuitively $\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]$ is the equivalence class mapped by $\bar{\varphi}$ to
\qquad

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{ }{\longleftrightarrow}} G \stackrel{e}{\rightleftarrows} H$ be a weakly Schreier extension and let $\varphi(n, h)=k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.
Let E be the equivalence relation given by

$$
\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right) \Longleftrightarrow k\left(n_{1}\right) \cdot s\left(h_{1}\right)=k\left(n_{2}\right) \cdot s\left(h_{2}\right) .
$$

As in the group case, φ induces a multiplication on $N \times H / E$.

$$
\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]=\bar{\varphi}^{-1}\left(\bar{\varphi}\left(\left[n_{1}, h_{1}\right]\right) \bar{\varphi}\left(\left[n_{2}, h_{2}\right]\right)\right)
$$

Intuitively $\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]$ is the equivalence class mapped by $\bar{\varphi}$ to

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{ }{\longleftrightarrow}} G \stackrel{e}{\rightleftarrows} H$ be a weakly Schreier extension and let $\varphi(n, h)=k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.
Let E be the equivalence relation given by

$$
\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right) \Longleftrightarrow k\left(n_{1}\right) \cdot s\left(h_{1}\right)=k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

As in the group case, φ induces a multiplication on $N \times H / E$.

$$
\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]=\bar{\varphi}^{-1}\left(\bar{\varphi}\left(\left[n_{1}, h_{1}\right]\right) \bar{\varphi}\left(\left[n_{2}, h_{2}\right]\right)\right)
$$

Intuitively $\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]$ is the equivalence class mapped by $\bar{\varphi}$ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{e}{\leftrightarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

A map $q: G \rightarrow N$ satisfying that for all $g \in G$ $g=k q(g) \cdot s e^{(g)}$
we call a Schreier retraction.
The class $\left[n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right]$ is sent by $\bar{\varphi}$ to
for any Schreier retraction q.
Thus the multiplication is again determined by a map

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

A map $q: G \rightarrow N$ satisfying that for all $g \in G$

$$
g=k q(g) \cdot s e(g)
$$

we call a Schreier retraction.
The class $\left[n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right]$ is sent by $\bar{\varphi}$ to
for any Schreier retraction q.
Thus the multiplication is again determined by a map
$\alpha(h, n)=q(s(h) k(n))$

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{e}{\leftrightarrows}} \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

A map $q: G \rightarrow N$ satisfying that for all $g \in G$

$$
g=k q(g) \cdot s e(g)
$$

we call a Schreier retraction.
The class $\left[n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right]$ is sent by $\bar{\varphi}$ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

for any Schreier retraction q.
Thus the multiplication is again determined by a map

Weakly Schreier extensions

Let $N \stackrel{k}{\stackrel{e}{\leftrightarrows}} \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

A map $q: G \rightarrow N$ satisfying that for all $g \in G$

$$
g=k q(g) \cdot s e(g),
$$

we call a Schreier retraction.
The class $\left[n_{1} \cdot q\left(s\left(h_{1}\right) k\left(n_{2}\right)\right), h_{1} h_{2}\right]$ is sent by $\bar{\varphi}$ to

$$
k\left(n_{1}\right) \cdot s\left(h_{1}\right) \cdot k\left(n_{2}\right) \cdot s\left(h_{2}\right)
$$

for any Schreier retraction q.
Thus the multiplication is again determined by a map

$$
\alpha(h, n)=q(s(h) k(n))
$$

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

Suppose h has a right inverse h
\square - $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.
Any equivalence relation satisrying the above we call

Admissible equivalence relations

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$, 2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$, $3\left(n_{1}, h\right) \sim(n, h)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,

Suppose h has a right inverse h

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must a'ways be discrete

Admissible equivalence relations

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,

Suppose h has a right inverse h^{*}

- $\left(n_{1}, h\right)$) ($\left.n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$.
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.
Any equivalence relation satisfying the ahove we call

Admissible equivalence relations

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,

Suppose h has a right inverse h

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.

Admissible equivalence relations

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,

Suppose h has a right inverse h^{*}

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,
4. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{\prime}\right) \sim\left(n_{2}, h h^{\prime}\right)$.

Suppose h has a right inverse h^{*}

Thus for a group the quotient must always be discrete.

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{e}{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,
4. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{\prime}\right) \sim\left(n_{2}, h h^{\prime}\right)$.

Suppose h has a right inverse h^{*}.

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$.

Thus for a group the quotient must always be discrete.

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{ }{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,
4. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{\prime}\right) \sim\left(n_{2}, h h^{\prime}\right)$.

Suppose h has a right inverse h^{*}.

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$.
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.
\square

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{ }{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,
4. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{\prime}\right) \sim\left(n_{2}, h h^{\prime}\right)$.

Suppose h has a right inverse h^{*}.

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$.
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.

Admissible equivalence relations

Let $N \stackrel{k}{\stackrel{ }{\rightleftarrows}} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, let $\varphi(n, h)=k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ.

The equivalence relation E satisfies the following properties.

1. $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$,
2. $\left(n_{1}, h_{1}\right) \sim\left(n_{2}, h_{2}\right)$ implies $h_{1}=h_{2}$,
3. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n n_{1}, h\right) \sim\left(n n_{2}, h\right)$,
4. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{\prime}\right) \sim\left(n_{2}, h h^{\prime}\right)$.

Suppose h has a right inverse h^{*}.

- $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left(n_{1}, h h^{*}\right) \sim\left(n_{2}, h h^{*}\right)$.
- $\left(n_{1}, 1\right) \sim\left(n_{2}, 1\right)$ implies $n_{1}=n_{2}$.

Thus for a group the quotient must always be discrete.
Any equivalence relation satisfying the above we call admissible.

Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$, 2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$, 3. $\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right]$, 4. $\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right]$, 5. $[\alpha(h, 1), h]=[1, h]$ 6. $[\alpha(1, n), 1]=[n, 1]$

Since groups always have the discrete quotient, α must be an action. Any man α satisfying this with resnect to an admissible quotient whe call a

Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

Since groups always have the discrete quotient, α must be an action. Any man α satisfying this with resnect to an admiscihle cuotient we call

Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$,
2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$,

Since groups always have the discrete quotient, α must be an action. Any man \sim satisflying this with resnect to an admissible quotient we

Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$,
2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$,
3. $\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right]$,

Since groups always have the discrete quotient, α must be an action. Any man \sim satisfying this with resnect to an admissible duntient we

Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$,
2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$,
3. $\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right]$,
4. $\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right]$,

Since groups always have the discrete quotient, α must be an action.

 Any man a satisflying this with respect to an admissible quotient, we
Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$,
2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$,
3. $\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right]$,
4. $\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right]$,
5. $[\alpha(h, 1), h]=[1, h]$,

Since groups always have the discrete quotient, α must be an action.

 Any map a satisfying this with respect to an admissible quotient, we
Compatible actions

Let $N \stackrel{k}{\longmapsto} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

1. $\left(n_{1}, h\right) \sim\left(n_{2}, h\right)$ implies $\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right]$,
2. $\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right)$ implies $\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$,
3. $\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right]$,
4. $\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right]$,
5. $[\alpha(h, 1), h]=[1, h]$,
6. $[\alpha(1, n), 1]=[n, 1]$.

Since groups always have the discrete quotient, α must be an action. Any map α satisfying this with respect to an admissible quotient, we

Compatible actions

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

$$
\begin{aligned}
& \text { 1. }\left(n_{1}, h\right) \sim\left(n_{2}, h\right) \text { implies }\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right] \text {, } \\
& \text { 2. }\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right) \text { implies }\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right] \text {, } \\
& \text { 3. }\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right] \text {, } \\
& \text { 4. }\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] \text {, } \\
& \text { 5. }[\alpha(h, 1), h]=[1, h] \text {, } \\
& \text { 6. }[\alpha(1, n), 1]=[n, 1] .
\end{aligned}
$$

Since groups always have the discrete quotient, α must be an action. Any map α satisfying this with respect to an admissible quotient, we

Compatible actions

Let $N \stackrel{k}{\rightleftarrows} G \underset{s}{\stackrel{e}{\rightleftarrows}} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h, n)=q(s(h) k(n))$.

Then α satisfied the following properties.

$$
\begin{aligned}
& \text { 1. }\left(n_{1}, h\right) \sim\left(n_{2}, h\right) \text { implies }\left[n_{1} \alpha(h, n), h\right]=\left[n_{2} \alpha(h, n), h\right] \text {, } \\
& \text { 2. }\left(n, h^{\prime}\right) \sim\left(n^{\prime}, h^{\prime}\right) \text { implies }\left[\alpha(h, n), h h^{\prime}\right]=\left[\alpha\left(h, n^{\prime}\right), h h^{\prime}\right] \text {, } \\
& \text { 3. }\left[\alpha\left(h, n n^{\prime}\right), h\right]=\left[\alpha(h, n) \cdot \alpha\left(h, n^{\prime}\right), h\right] \text {, } \\
& \text { 4. }\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] \text {, } \\
& \text { 5. }[\alpha(h, 1), h]=[1, h] \text {, } \\
& \text { 6. }[\alpha(1, n), 1]=[n, 1] .
\end{aligned}
$$

Since groups always have the discrete quotient, α must be an action.
Any map α satisfying this with respect to an admissible quotient, we call a compatible action.

Characterizing weakly Schreier extensions

Let E be an admissible equivalence relation on $N \times H$ and let α be a compatible action.

Theorem
The set $N \times H / E$ equipped with multiplication
is a monoid
Theorem
The diagram
where $k(n)=[n, 1], e([n, h])=h$ and $s(h)=[1, h]$, is a weakly
Schreier extension.

Characterizing weakly Schreier extensions

Let E be an admissible equivalence relation on $N \times H$ and let α be a compatible action.

Theorem

The set $N \times H / E$ equipped with multiplication

$$
\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]=\left[n_{1} \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right],
$$

is a monoid.
Theorem
The diagram
where $k(n)=[n, 1], e([n, h])=h$ and $s(h)=[1, h]$, is a weakly
Schreier extension.

Characterizing weakly Schreier extensions

Let E be an admissible equivalence relation on $N \times H$ and let α be a compatible action.

Theorem

The set $N \times H / E$ equipped with multiplication

$$
\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]=\left[n_{1} \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right],
$$

is a monoid.

Theorem

The diagram

$$
N \stackrel{k}{\longmapsto} N \times H / E \underset{s}{\stackrel{e}{\rightleftarrows}} H
$$

where $k(n)=[n, 1], e([n, h])=h$ and $s(h)=[1, h]$, is a weakly
Schreier extension.

Characterizing weakly Schreier extensions

Let E be an admissible equivalence relation on $N \times H$ and let α be a compatible action.

Theorem

The set $N \times H / E$ equipped with multiplication

$$
\left[n_{1}, h_{1}\right] \cdot\left[n_{2}, h_{2}\right]=\left[n_{1} \alpha\left(h_{1}, n_{2}\right), h_{1} h_{2}\right],
$$

is a monoid.

Theorem

The diagram

$$
N \triangleright \stackrel{k}{\longleftrightarrow} N \times H / E \underset{s}{\stackrel{e}{\rightleftarrows}} H
$$

where $k(n)=[n, 1], e([n, h])=h$ and $s(h)=[1, h]$, is a weakly
Schreier extension.
The processes described in this talk are inverses.

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on $N \times H$ given by

$$
(n, h) \sim\left(n^{\prime}, h\right) \text { for all } n \in N \text { and } 1 \neq h \in H .
$$

This quotient is admissible and can be identified with $N \sqcup(H-\{1\})$
where

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on $N \times H$ given by

$$
(n, h) \sim\left(n^{\prime}, h\right) \text { for all } n \in N \text { and } 1 \neq h \in H
$$

This quotient is admissible and can be identified with $N \sqcup(H-\{1\})$
where

- $[n, 1] \mapsto n$

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Consider the quotient Q on $N \times H$ given by

$$
(n, h) \sim\left(n^{\prime}, h\right) \text { for all } n \in N \text { and } 1 \neq h \in H .
$$

This quotient is admissible and can be identified with $N \sqcup(H-\{1\})$ where

- $[n, 1] \mapsto n$
- $[n, h] \mapsto h$ when $h \neq 1$.

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.

Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.

Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.

Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n \cdot n$ ' the usual product in N
- $h \cdot h^{\prime}$ the usual product in H, and
- $n \cdot h=h \cdot n=h$

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.
Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$.
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.
Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n \cdot n^{\prime}$ the usual product in N,
- $h \cdot h^{\prime}$ the usual product in H, and
- $n \cdot h=h \cdot n=h$

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.
Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$.
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.
Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n \cdot n^{\prime}$ the usual product in N,
- $h \cdot h^{\prime}$ the usual product in H, and
- $n \cdot h=h \cdot n=h$

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.
Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$.
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$.
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.
Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n 2 \cdot n^{\prime}$ the usual product in N^{T}
- $h \cdot h^{\prime}$ the usual product in H, and

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.
Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$.
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$.
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.

Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n \cdot n^{\prime}$ the usual product in N
- $h \cdot h^{\prime}$ the usual product in H, and

Constructing Examples

Let N be a monoid and H a monoid with no non-trivial left units.
Every function $\alpha: N \times H \rightarrow N$ is compatible with the quotient.
Recall that $[n, h] \cdot\left[n^{\prime}, h^{\prime}\right]=\left[n \cdot \alpha\left(h, n^{\prime}\right), h h^{\prime}\right]$.
Because of the quotient $n \cdot \alpha\left(h, n^{\prime}\right)$ is irrelevant whenever $h h^{\prime} \neq 1$.
When $h h^{\prime}=1$ this means $h=1$ and so $n \alpha\left(h, n^{\prime}\right)=n n^{\prime}$.
Thinking in terms of $N \sqcup(H-\{1\})$ multiplication becomes

- $n \cdot n^{\prime}$ the usual product in N,
- $h \cdot h^{\prime}$ the usual product in H, and
- $n \cdot h=h \cdot n=h$

Can we relax the condition that H contain no left units?

Consider the quotient whereby

- $(n, h) \sim\left(n^{\prime}, h\right)$ if h is not a left unit,
- $(n, h) \sim\left(n^{\prime}, h\right) \Rightarrow n=n^{\prime}$ if h is a left unit.

This is the coarsest admissible quotient on $N \times H$
When does there exist a compatible action?

The coarsest quotient

Can we relax the condition that H contain no left units?

Consider the quotient whereby

- $(n, h) \sim\left(n^{\prime}, h\right)$ if h is not a left unit,
- $(n, h) \sim\left(n^{\prime}, h\right) \Rightarrow n=n^{\prime}$ if h is a left unit.

This is the coarsest admissible quotient on $N \times H$

When does there exist a compatible action?

The coarsest quotient

Can we relax the condition that H contain no left units?

Consider the quotient whereby

- $(n, h) \sim\left(n^{\prime}, h\right)$ if h is not a left unit,
- $(n, h) \sim\left(n^{\prime}, h\right) \Rightarrow n=n^{\prime}$ if h is a left unit.

This is the coarsest admissible quotient on $N \times H$.

When does there exist a compatible action?

The coarsest quotient

Can we relax the condition that H contain no left units?

Consider the quotient whereby

- $(n, h) \sim\left(n^{\prime}, h\right)$ if h is not a left unit,
- $(n, h) \sim\left(n^{\prime}, h\right) \Rightarrow n=n^{\prime}$ if h is a left unit.

This is the coarsest admissible quotient on $N \times H$.
When does there exist a compatible action?

Compatible actions

Let N and H be monoids and Q the coarsest admissible quotient.
The set $L(H)$ of left-units of H forms a submonoid of H.

The complement $\overline{L(H)}$ of $L(H)$ forms a right ideal.

- It is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$ then $(x h) y=1 \mathrm{imn}$ lies that $h y$ is a right inverse of x

Theorem

If $L(H)$ is a two-sided ideal, each map $a: H \times N \rightarrow N$ in which
$\left.\alpha\right|_{L(H) \times N}$ is an action of $L(H)$ on N, is compatible with the coarse
quotient Q. Otherwise, no map α is compatible with Q.*

Compatible actions

Let N and H be monoids and Q the coarsest admissible quotient.
The set $L(H)$ of left-units of H forms a submonoid of H.
The complement $\overline{L(H)}$ of $L(H)$ forms a right ideal.

- it is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$, then $(x h) y=1$ implies that $h y$ is a right inverse of x

> Theorem
> If $\overline{L(H)}$ is a two-sided ideal, each map $\alpha: H \times N \rightarrow N$ in which $\left.\alpha\right|_{L(H) \times N}$ is an action of $L(H)$ on N, is compatible with the coarse quotient Q. Otherwise, no map α is compatible with Q.*

Compatible actions

Let N and H be monoids and Q the coarsest admissible quotient.
The set $L(H)$ of left-units of H forms a submonoid of H.
The complement $\overline{L(H)}$ of $L(H)$ forms a right ideal.

- It is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$, then $(x h) y=1$ implies that $h y$ is a right inverse of x.

Theorem

If $\overline{L(H)}$ is a two-sided ideal, each map $\alpha: H \times N \rightarrow N$ in which $\left.\alpha\right|_{L(H) \times N}$ is an action of $L(H)$ on N, is compatible with the coarse quotient Q. Otherwise, no map α is compatible with Q.*

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.

To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$

Additionally h and h^{\prime} must be left units as well.

So with respect to this requirement (and all others) α behaves like an action of $L(H)$ on N

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.

To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$.

Additionally h and h^{\prime} must be left units as well.
So with respect to this requirement (and all others) α behaves like an
action of $L(H)$ on N

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.

To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$.
Additionally h and h^{\prime} must be left units as well.
So with respect to this requirement (and all others) α behaves like an
action of $L(H)$ on N

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.
To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$.
Additionally h and h^{\prime} must be left units as well.

So with respect to this requirement (and all others) α behaves like an
action of $L(H)$ on N

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.
To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$.
Additionally h and h^{\prime} must be left units as well.
So with respect to this requirement (and all others) α behaves like an action of $L(H)$ on N.

Intuition

Let N and H be monoids and Q the coarsest admissible quotient.
To illustrate the general idea lets looks at this requirement

$$
\left[\alpha\left(h h^{\prime}, n\right), h h^{\prime}\right]=\left[\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right), h h^{\prime}\right] .
$$

If $h h^{\prime}$ is a left unit then $\alpha\left(h h^{\prime}, n\right)=\alpha\left(h, \alpha\left(h^{\prime}, n\right)\right)$.
Additionally h and h^{\prime} must be left units as well.
So with respect to this requirement (and all others) α behaves like an action of $L(H)$ on N.

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal

Then there exists $x \in L(H)$ and $y \in L(H)$ such that $x y \in L(H)$
The requirement

$$
(n, y) \sim\left(n^{\prime}, y\right) \text { implies }[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]
$$

gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$
We also know that $a(x, 1)=1$ and so $a(x, n)=1$ for all $n \in N$
Finally consider

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.
Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $x y \in L(H)$
The requirement

$$
(n, y) \sim\left(n^{\prime}, y\right) \text { implies }[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]
$$

gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$
We aiso know that $a(x, 1)=1$ and so $a(x, n)=1$ for all $n \in N$
Finally consider

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.
Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $x y \in L(H)$.
The requirement
$(n, y) \sim\left(n^{\prime}, y\right)$ implies $[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]$
gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$
We also know that $\alpha(x, 1)=1$ and so $\alpha(x, n)=1$ for all $n \in N$
Finally consider

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.
Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $x y \in L(H)$.
The requirement

$$
(n, y) \sim\left(n^{\prime}, y\right) \text { implies }[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]
$$

gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$.
We also know that $\alpha(x, 1)=1$ and so $\alpha(x, n)=1$ for all $n \in N$
Finally consider

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.
Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $x y \in L(H)$.
The requirement

$$
(n, y) \sim\left(n^{\prime}, y\right) \text { implies }[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]
$$

gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$.
We also know that $\alpha(x, 1)=1$ and so $\alpha(x, n)=1$ for all $n \in N$
Finally consider

Intuition

Otherwise, if $h h^{\prime}$ is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.
Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $x y \in L(H)$.
The requirement

$$
(n, y) \sim\left(n^{\prime}, y\right) \text { implies }[\alpha(x, n), x y]=\left[\alpha\left(x, n^{\prime}\right), x y\right]
$$

gives that $\alpha(x, n)=\alpha\left(x, n^{\prime}\right)$ for all $n, n^{\prime} \in N$.
We also know that $\alpha(x, 1)=1$ and so $\alpha(x, n)=1$ for all $n \in N$
Finally consider
$[n, 1]=[\alpha(1, n), 1]=\left[\alpha\left(x x^{-1}, n\right), x x^{-1}\right]=\alpha\left(x, \alpha\left(x^{-1}, n\right), 1\right)=[1,1]$.

Examples

This two sided property holds whenever H is

- H is finite,
- H is commutative,
- H is a group,
- H has no inverses at all
- H is a monoid of $n \times n$ matrices over a field

The result can be generalised where $\overline{L(H)}$ is replaced with any prime

Examples

This two sided property holds whenever H is

- H is finite,
- H is commutative,
- H is a group,
- H has no inverses at all
- H is a monoid of $n \times n$ matrices over a field

The result can be generalised where $\overline{L(H)}$ is replaced with any prime ideal.

