Characterising Weakly Schreier Extensions

Peter Faul peter@faul.io University of Cambridge

Leicester 2019

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a diagram in the category of groups.

The diagram is a split extension if

- 1. k is the kernel of e,
- 2. e is the cokernel of k,
- 3. es = 1.

Every element $g \in G$ can be written

$$g = g \cdot (se(g^{-1}) \cdot se(g))$$
$$= (g \cdot se(g^{-1})) \cdot se(g).$$

Notice that $g \cdot se(g^{-1})$ is sent by e to 1.

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a diagram in the category of groups.

The diagram is a split extension if

- 1. k is the kernel of e,
- 2. e is the cokernel of k,
- 3. es = 1.

Every element $g \in G$ can be written

$$g = g \cdot (se(g^{-1}) \cdot se(g))$$
$$= (g \cdot se(g^{-1})) \cdot se(g).$$

Notice that $g \cdot se(g^{-1})$ is sent by e to 1.

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a diagram in the category of groups.

The diagram is a split extension if

- 1. k is the kernel of e,
- 2. e is the cokernel of k,
- 3. es = 1.

Every element $g \in G$ can be written

$$g = g \cdot (se(g^{-1}) \cdot se(g))$$
$$= (g \cdot se(g^{-1})) \cdot se(g).$$

Notice that $g \cdot se(g^{-1})$ is sent by e to 1.

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a diagram in the category of groups.

The diagram is a split extension if

- 1. k is the kernel of e,
- 2. e is the cokernel of k,
- 3. es = 1.

Every element $g \in G$ can be written

$$g = g \cdot (se(g^{-1}) \cdot se(g))$$
$$= (g \cdot se(g^{-1})) \cdot se(g).$$

Notice that $g \cdot se(g^{-1})$ is sent by e to 1.

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a diagram in the category of groups.

The diagram is a split extension if

- 1. k is the kernel of e,
- 2. e is the cokernel of k,
- 3. es = 1.

Every element $g \in G$ can be written

$$g = g \cdot (se(g^{-1}) \cdot se(g))$$
$$= (g \cdot se(g^{-1})) \cdot se(g).$$

Notice that $g \cdot se(g^{-1})$ is sent by e to 1.

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups

For each $g \in G$ there exists an $n \in N$ such that $g = k(n) \cdot se(g)$.

Suppose $g = k(n) \cdot s(h)$ and apply e to both sides.

$$e(g) = e(k(n) \cdot s(h))$$
$$= 1 \cdot es(h)$$
$$= h.$$

Thus if $g = k(n) \cdot s(h)$, it must be that h = e(g).

Furthermore if

$$k(n_1) \cdot se(g) = g = k(n_2) \cdot se(g),$$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups

For each $g \in G$ there exists an $n \in N$ such that $g = k(n) \cdot se(g)$.

Suppose $g=k(n)\cdot s(h)$ and apply e to both sides.

$$e(g) = e(k(n) \cdot s(h))$$
$$= 1 \cdot es(h)$$
$$= h.$$

Thus if $g = k(n) \cdot s(h)$, it must be that h = e(g).

Furthermore if

$$k(n_1) \cdot se(g) = g = k(n_2) \cdot se(g),$$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups.

For each $g \in G$ there exists an $n \in N$ such that $g = k(n) \cdot se(g)$.

Suppose $g = k(n) \cdot s(h)$ and apply e to both sides.

$$e(g) = e(k(n) \cdot s(h))$$
$$= 1 \cdot es(h)$$
$$= h.$$

Thus if $g = k(n) \cdot s(h)$, it must be that h = e(g).

Furthermore if

$$k(n_1) \cdot se(g) = g = k(n_2) \cdot se(g),$$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups.

For each $g \in G$ there exists an $n \in N$ such that $g = k(n) \cdot se(g)$.

Suppose $g = k(n) \cdot s(h)$ and apply e to both sides.

$$e(g) = e(k(n) \cdot s(h))$$
$$= 1 \cdot es(h)$$
$$= h.$$

Thus if $g = k(n) \cdot s(h)$, it must be that h = e(g).

Furthermore if

$$k(n_1) \cdot se(g) = g = k(n_2) \cdot se(g),$$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups.

For each $g \in G$ there exists an $n \in N$ such that $g = k(n) \cdot se(g)$.

Suppose $g = k(n) \cdot s(h)$ and apply e to both sides.

$$e(g) = e(k(n) \cdot s(h))$$
$$= 1 \cdot es(h)$$
$$= h.$$

Thus if $g = k(n) \cdot s(h)$, it must be that h = e(g).

Furthermore if

$$k(n_1) \cdot se(g) = g = k(n_2) \cdot se(g),$$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$$
 be a split extension of groups

Consider the map $\varphi \colon N \times H \to G$, $\varphi(n,h) = k(n) \cdot s(h)$.

This map is a bijection of sets and so has an inverse φ^{-1} .

N imes H inherits a group structure from φ ,

 $(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a split extension of groups.

 $\text{Consider the map } \varphi \colon N \times H \to G \text{, } \varphi(n,h) = k(n) \cdot s(h).$

This map is a bijection of sets and so has an inverse $arphi^{-1}.$

 $N \times H$ inherits a group structure from φ ,

 $(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a split extension of groups.

 $\text{Consider the map } \varphi \colon N \times H \to G \text{, } \varphi(n,h) = k(n) \cdot s(h).$

This map is a bijection of sets and so has an inverse φ^{-1} .

N imes H inherits a group structure from φ ,

 $(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$
 be a split extension of groups.

 $\label{eq:consider the map} \text{Consider the map } \varphi \colon N \times H \to G \text{, } \varphi(n,h) = k(n) \cdot s(h).$

This map is a bijection of sets and so has an inverse φ^{-1} .

 $N\times H$ inherits a group structure from $\varphi,$

$$(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a split extension of groups.

 $\text{Consider the map } \varphi \colon N \times H \to G \text{, } \varphi(n,h) = k(n) \cdot s(h).$

This map is a bijection of sets and so has an inverse φ^{-1} .

 $N\times H$ inherits a group structure from $\varphi,$

$$(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$$
 be a split extension of groups.

 $\text{Consider the map } \varphi \colon N \times H \to G, \ \varphi(n,h) = k(n) \cdot s(h).$

This map is a bijection of sets and so has an inverse φ^{-1} .

 $N\times H$ inherits a group structure from $\varphi,$

$$(n_1, h_1) \cdot (n_2, h_2) = \varphi^{-1}(\varphi(n_1, h_1)\varphi(n_2, h_2)),$$

turning φ into an isomorphism of groups.

Intuitively $(n_1,h_1)\cdot(n_2,h_2)$ is the element sent by φ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$ be a split extension of groups and let $\varphi(n,h) = k(n)s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g = k(n) \cdot se(g)$.

The set map $q=\pi_1 \varphi^{-1}$ selects this unique n, which is to say that $g=kq(g)\cdot se(g).$

We can use q to define the following multiplication on $N\times H$

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot q(s(h_1)k(n_2)), h_1h_2).$$

The map φ will send $(n_1 \cdot q(s(h_1)k(n_2)), h_1h_2)$ to

$$k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$ be a split extension of groups and let $\varphi(n,h) = k(n)s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g = k(n) \cdot se(g)$.

The set map $q=\pi_1 arphi^{-1}$ selects this unique n, which is to say that $g=kq(g)\cdot se(g).$

We can use q to define the following multiplication on $N\times H$

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot q(s(h_1)k(n_2)), h_1h_2).$$

The map φ will send $(n_1 \cdot q(s(h_1)k(n_2)), h_1h_2)$ to

$$k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$ be a split extension of groups and let $\varphi(n,h) = k(n)s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g = k(n) \cdot se(g)$.

The set map $q = \pi_1 \varphi^{-1}$ selects this unique n, which is to say that $g = kq(g) \cdot se(g).$

We can use q to define the following multiplication on $N\times H$

 $(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot q(s(h_1)k(n_2)), h_1h_2).$

The map arphi will send $(n_1 \cdot q(s(h_1)k(n_2)),h_1h_2)$ to

$$k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$ be a split extension of groups and let $\varphi(n,h) = k(n)s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g = k(n) \cdot se(g)$.

The set map $q = \pi_1 \varphi^{-1}$ selects this unique n, which is to say that

$$g = kq(g) \cdot se(g).$$

We can use q to define the following multiplication on $N\times H$

 $(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot q(s(h_1)k(n_2)), h_1h_2).$

The map arphi will send $(n_1 \cdot q(s(h_1)k(n_2)),h_1h_2)$ to

 $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$ be a split extension of groups and let $\varphi(n,h) = k(n)s(h)$.

For each $g \in G$, there is a unique $n \in N$ such that $g = k(n) \cdot se(g)$.

The set map $q = \pi_1 \varphi^{-1}$ selects this unique n, which is to say that

$$g = kq(g) \cdot se(g).$$

We can use q to define the following multiplication on $N\times H$

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot q(s(h_1)k(n_2)), h_1h_2).$$

The map φ will send $(n_1 \cdot q(s(h_1)k(n_2)), h_1h_2)$ to

$$k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $\alpha \colon H \times N \to N$ satisfying

1. $\alpha(h, n_1 n_2) = \alpha(h, n_1)\alpha(h, n_2)$ 2. $\alpha(h_1 h_2, n) = \alpha(h_1, \alpha(h_2, n)),$ 3. $\alpha(h, 1) = 1,$ 4. $\alpha(1, n) = n.$

Let
$$N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$$
 be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $lpha \colon H imes N o N$ satisfying

1.
$$\alpha(h, n_1 n_2) = \alpha(h, n_1)\alpha(h, n_2)$$
,
2. $\alpha(h_1 h_2, n) = \alpha(h_1, \alpha(h_2, n))$,
3. $\alpha(h, 1) = 1$,

4. $\alpha(1,n) = n$.

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $lpha \colon H imes N o N$ satisfying

- 1. $\alpha(h, n_1n_2) = \alpha(h, n_1)\alpha(h, n_2)$,
- 2. $\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n))$,
- 3. $\alpha(h, 1) = 1$,
- 4. $\alpha(1,n) = n$.

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $\alpha \colon H \times N \to N$ satisfying

- 1. $\alpha(h, n_1 n_2) = \alpha(h, n_1)\alpha(h, n_2)$,
- 2. $\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n)),$
- 3. $\alpha(h,1) = 1$,

4. $\alpha(1,n) = n$.

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $\alpha \colon H \times N \to N$ satisfying

1. $\alpha(h, n_1n_2) = \alpha(h, n_1)\alpha(h, n_2),$ 2. $\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n)),$ 3. $\alpha(h, 1) = 1,$ 4. $\alpha(1, n) = n.$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $\alpha \colon H \times N \to N$ satisfying

1. $\alpha(h, n_1n_2) = \alpha(h, n_1)\alpha(h, n_2),$ 2. $\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n)),$ 3. $\alpha(h, 1) = 1,$ 4. $\alpha(1, n) = n.$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

The map $\alpha(h,n) = q(s(h)k(n))$ is an action of H on N.

An action of H on N is a map $\beta \colon H \to \operatorname{Aut}(N)$.

They corresponds via currying to maps $\alpha \colon H \times N \to N$ satisfying

1. $\alpha(h, n_1n_2) = \alpha(h, n_1)\alpha(h, n_2),$ 2. $\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n)),$ 3. $\alpha(h, 1) = 1,$ 4. $\alpha(1, n) = n.$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

Given any action α of H on N

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot \alpha(h_1, n_2), h_1 h_2)$$

turns $N \times H$ into a group.

We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.

A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension

$$N \xrightarrow{k} N \rtimes_{\alpha} H \xleftarrow{e}{s} H$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

Given any action α of H on N

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot \alpha(h_1, n_2), h_1 h_2)$$

turns $N \times H$ into a group.

We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.

A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension

$$N \xrightarrow{k} N \rtimes_{\alpha} H \xleftarrow{e}{s} H$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

Given any action α of H on N

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot \alpha(h_1, n_2), h_1 h_2)$$

turns $N \times H$ into a group.

We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.

A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension

$$N \xrightarrow{k} N \rtimes_{\alpha} H \xleftarrow{e}_{s} H$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be a split extension, $\varphi(n,h) = k(n)s(h)$ and $q = \pi_1 \varphi^{-1}$.

Given any action α of H on N

$$(n_1, h_1) \cdot (n_2, h_2) = (n_1 \cdot \alpha(h_1, n_2), h_1 h_2)$$

turns $N \times H$ into a group.

We call the resulting group a semidirect product and write $N \rtimes_{\alpha} H$.

A semidirect product $N \rtimes_{\alpha} H$ naturally gives a split extension

$$N \xrightarrow{k} N \rtimes_{\alpha} H \xleftarrow{e}{s} H$$

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$g = k(n) \cdot s(h)$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$N \xrightarrow{k} G \xleftarrow{e}_{s} H$$

where each g can be written $g = k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call Schreier extensions.

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$g = k(n) \cdot s(h)$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$N \xrightarrow{k} G \xleftarrow{e}_{s} H$$

where each g can be written $g = k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call Schreier extensions.

To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$g = k(n) \cdot s(h)$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$

where each g can be written $g = k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call Schreier extensions.
To what extent did the preceding arguments use group inverses?

Inverses were only used to establish that we can always write

$$g = k(n) \cdot s(h)$$

for unique $n \in N$ and $h \in H$.

Thus the above results apply to any split extension of monoids

$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H$$

where each g can be written $g = k(n) \cdot s(h)$ for unique n and h.

Such split extensions we call Schreier extensions.

This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

$$N \xrightarrow{k} G \xleftarrow{e}_{s} H,$$

in which each $g \in G$ can be written $g = k(n) \cdot s(h)$ for some n and h.

This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

$$N \xrightarrow{k} G \xleftarrow{e}{s} H,$$

in which each $g \in G$ can be written $g = k(n) \cdot s(h)$ for some n and h.

This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H,$$

in which each $g \in G$ can be written $g = k(n) \cdot s(h)$ for some n and h.

This affords some flexibility not present in the group case.

A weakly Schreier extension is a split extension

$$N \xrightarrow{k} G \xleftarrow{e}{\leftarrow s} H,$$

in which each $g \in G$ can be written $g = k(n) \cdot s(h)$ for some n and h.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

• $\mathcal{O}(X)$ is closed under binary intersection.

• Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

There is a natural way to associate a monoid to a topological space.

- $\mathcal{O}(X)$ is closed under binary intersection.
- Since $X \in \mathcal{O}(X)$, the binary intersection has an identity.

Thus $(\mathcal{O}(X), \cap, X)$ is a monoid.

Incidentally this assignment is functorial and has a reflection.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

What topological spaces $G = (|G|, \mathcal{O}(G))$ satisfy that H is an open subspace and N its closed complement?

Such a space G we call an Artin glueing of H by N.

It must be that $|G| = |N| \sqcup |H|$.

Each open $U \in \mathcal{O}(G)$ then corresponds to a pair (U_N, U_H) where $U_N = U \cap N$ and $U_H = U \cap H$.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G : \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame $\operatorname{Gl}(f)$ as above.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G: \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame $\operatorname{Gl}(f)$ as above.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G: \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame $\operatorname{Gl}(f)$ as above.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G: \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame Gl(f) as above.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G: \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame Gl(f) as above.

For each $U \in \mathcal{O}(H)$ there is a largest open $V \in \mathcal{O}(N)$ such that (V, U) occurs in L_G .

Let $f_G: \mathcal{O}(H) \to \mathcal{O}(N)$ be a function which assigns to each $U \in \mathcal{O}(H)$ the largest V.

This function preserves finite meets.

We have that $(V, U) \in L_G$ if and only if $V \subseteq f(U)$.

Given any finite-meet preserving map $f: \mathcal{O}(H) \to \mathcal{O}(N)$ we can construct a frame $\operatorname{Gl}(f)$ as above.

Let N and H be frames and let $f: H \to N$ preserve finite meets.

The following is a split extension of monoids

$$N \xrightarrow{k} \operatorname{Gl}(f) \xleftarrow{e}{s} H$$

where k(n) = (n, 1), e(n, h) = h and s(h) = (f(h), h).

Since $(n,h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$(n,h) = (n,1) \land (f(h),h)$$
$$= k(n) \land s(h).$$

The diagram is weakly Schreier and it can be shown it's not Schreier.

Let N and H be frames and let $f: H \to N$ preserve finite meets.

The following is a split extension of monoids

$$N \xrightarrow{k} \operatorname{Gl}(f) \xleftarrow{e}{s} H$$

where k(n)=(n,1), e(n,h)=h and s(h)=(f(h),h).

Since $(n,h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$(n,h) = (n,1) \land (f(h),h)$$
$$= k(n) \land s(h).$$

The diagram is weakly Schreier and it can be shown it's not Schreier.

Let N and H be frames and let $f: H \to N$ preserve finite meets.

The following is a split extension of monoids

$$N \xrightarrow{k} \operatorname{Gl}(f) \xleftarrow{e}{s} H$$

where k(n) = (n, 1), e(n, h) = h and s(h) = (f(h), h).

Since $(n,h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$(n,h) = (n,1) \land (f(h),h)$$
$$= k(n) \land s(h).$$

The diagram is weakly Schreier and it can be shown it's not Schreier.

Let N and H be frames and let $f: H \to N$ preserve finite meets.

The following is a split extension of monoids

$$N \xrightarrow{k} \operatorname{Gl}(f) \xleftarrow{e}{s} H$$

where k(n) = (n, 1), e(n, h) = h and s(h) = (f(h), h).

Since $(n,h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$(n,h) = (n,1) \land (f(h),h)$$
$$= k(n) \land s(h).$$

The diagram is weakly Schreier and it can be shown it's not Schreier.

Let N and H be frames and let $f: H \to N$ preserve finite meets.

The following is a split extension of monoids

$$N \xrightarrow{k} \operatorname{Gl}(f) \xleftarrow{e}{s} H$$

where k(n)=(n,1), e(n,h)=h and s(h)=(f(h),h).

Since $(n,h) \in \operatorname{Gl}(f)$ means $n \leq f(h)$ we have that

$$(n,h) = (n,1) \land (f(h),h)$$
$$= k(n) \land s(h).$$

The diagram is weakly Schreier and it can be shown it's not Schreier.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a weakly Schreier extension and let $\varphi(n,h) = k(n) \cdot s(h)$.

The map arphi is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

$$(n_1, h_1) \sim (n_2, h_2) \iff k(n_1) \cdot s(h_1) = k(n_2) \cdot s(h_2).$$

As in the group case, φ induces a multiplication on $N \times H/E$.

$$[n_1, h_1] \cdot [n_2, h_2] = \overline{\varphi}^{-1}(\overline{\varphi}([n_1, h_1])\overline{\varphi}([n_2, h_2]))$$

Intuitively $[n_1, h_1] \cdot [n_2, h_2]$ is the equivalence class mapped by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a weakly Schreier extension and let $\varphi(n,h) = k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

 $(n_1, h_1) \sim (n_2, h_2) \iff k(n_1) \cdot s(h_1) = k(n_2) \cdot s(h_2).$

As in the group case, φ induces a multiplication on $N \times H/E$.

 $[n_1, h_1] \cdot [n_2, h_2] = \overline{\varphi}^{-1}(\overline{\varphi}([n_1, h_1])\overline{\varphi}([n_2, h_2]))$

Intuitively $[n_1,h_1]\cdot [n_2,h_2]$ is the equivalence class mapped by $\overline{\varphi}$ to $k(n_1)\cdot s(h_1)\cdot k(n_2)\cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a weakly Schreier extension and let $\varphi(n,h) = k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

$$(n_1, h_1) \sim (n_2, h_2) \iff k(n_1) \cdot s(h_1) = k(n_2) \cdot s(h_2).$$

As in the group case, φ induces a multiplication on N imes H/E.

$$[n_1, h_1] \cdot [n_2, h_2] = \overline{\varphi}^{-1}(\overline{\varphi}([n_1, h_1])\overline{\varphi}([n_2, h_2]))$$

Intuitively $[n_1, h_1] \cdot [n_2, h_2]$ is the equivalence class mapped by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftarrow}} H$ be a weakly Schreier extension and let $\varphi(n,h) = k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

$$(n_1, h_1) \sim (n_2, h_2) \iff k(n_1) \cdot s(h_1) = k(n_2) \cdot s(h_2).$$

As in the group case, φ induces a multiplication on $N \times H/E$. $[n_1, h_1] \cdot [n_2, h_2] = \overline{\varphi}^{-1}(\overline{\varphi}([n_1, h_1])\overline{\varphi}([n_2, h_2]))$

Intuitively $[n_1, h_1] \cdot [n_2, h_2]$ is the equivalence class mapped by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be a weakly Schreier extension and let $\varphi(n,h) = k(n) \cdot s(h)$.

The map φ is by definition a surjection and so we can quotient by it.

Let E be the equivalence relation given by

$$(n_1, h_1) \sim (n_2, h_2) \iff k(n_1) \cdot s(h_1) = k(n_2) \cdot s(h_2).$$

As in the group case, φ induces a multiplication on $N \times H/E$.

$$[n_1, h_1] \cdot [n_2, h_2] = \overline{\varphi}^{-1}(\overline{\varphi}([n_1, h_1])\overline{\varphi}([n_2, h_2]))$$

Intuitively $[n_1, h_1] \cdot [n_2, h_2]$ is the equivalence class mapped by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2).$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

A map $q: G \to N$ satisfying that for all $g \in G$ $q = kq(q) \cdot se(q),$

we call a Schreier retraction.

The class $[n_1 \cdot q(s(h_1)k(n_2)), h_1h_2]$ is sent by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$

for any Schreier retraction q.

Thus the multiplication is again determined by a map

$$\alpha(h,n) = q(s(h)k(n)).$$

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

A map $q \colon G \to N$ satisfying that for all $g \in G$

 $g = kq(g) \cdot se(g),$

we call a Schreier retraction.

The class $[n_1 \cdot q(s(h_1)k(n_2)), h_1h_2]$ is sent by \overline{arphi} to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$

for any Schreier retraction q.

Thus the multiplication is again determined by a map

$$\alpha(h,n) = q(s(h)k(n)).$$
Weakly Schreier extensions

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

A map $q \colon G \to N$ satisfying that for all $g \in G$

$$g = kq(g) \cdot se(g),$$

we call a Schreier retraction.

The class $[n_1 \cdot q(s(h_1)k(n_2)), h_1h_2]$ is sent by $\overline{\varphi}$ to $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$

for any Schreier retraction q.

Thus the multiplication is again determined by a map $\alpha(h,n) = q(s(h)k(n)).$

Weakly Schreier extensions

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant s} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

A map $q \colon G \to N$ satisfying that for all $g \in G$

$$g = kq(g) \cdot se(g),$$

we call a Schreier retraction.

The class
$$[n_1 \cdot q(s(h_1)k(n_2)), h_1h_2]$$
 is sent by $\overline{\varphi}$ to
 $k(n_1) \cdot s(h_1) \cdot k(n_2) \cdot s(h_2)$

for any Schreier retraction q.

Thus the multiplication is again determined by a map

$$\alpha(h,n) = q(s(h)k(n)).$$

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

•
$$(n_1, h) \sim (n_2, h)$$
 implies $(n_1, hh^*) \sim (n_2, hh^*)$.

• $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1. $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$, 2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$, 3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$, 4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

•
$$(n_1, h) \sim (n_2, h)$$
 implies $(n_1, hh^*) \sim (n_2, hh^*)$.

• $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

- $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh^*) \sim (n_2, hh^*)$.
- $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{\underset{s}{\longleftrightarrow}} H$ be weakly Schreier, let $\varphi(n,h) = k(n) \cdot s(h)$ and let E be the equivalence relation induced by φ .

The equivalence relation E satisfies the following properties.

1.
$$(n_1, 1) \sim (n_2, 1)$$
 implies $n_1 = n_2$,
2. $(n_1, h_1) \sim (n_2, h_2)$ implies $h_1 = h_2$,
3. $(n_1, h) \sim (n_2, h)$ implies $(nn_1, h) \sim (nn_2, h)$,
4. $(n_1, h) \sim (n_2, h)$ implies $(n_1, hh') \sim (n_2, hh')$.

Suppose h has a right inverse h^* .

•
$$(n_1, h) \sim (n_2, h)$$
 implies $(n_1, hh^*) \sim (n_2, hh^*)$.

• $(n_1, 1) \sim (n_2, 1)$ implies $n_1 = n_2$.

Thus for a group the quotient must always be discrete.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then lpha satisfied the following properties.

1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

- 1. $(n_1, h) \sim (n_2, h)$ implies $[n_1 \alpha(h, n), h] = [n_2 \alpha(h, n), h]$,
- 2. $(n,h')\sim (n',h')$ implies $[\alpha(h,n),hh']=[\alpha(h,n'),hh'],$
- 3. $[\alpha(h,nn'),h] = [\alpha(h,n) \cdot \alpha(h,n'),h]$
- 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$
- 5. $[\alpha(h,1),h] = [1,h],$
- 6. $[\alpha(1,n),1] = [n,1].$

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

- 1. $(n_1, h) \sim (n_2, h)$ implies $[n_1 \alpha(h, n), h] = [n_2 \alpha(h, n), h]$,
- 2. $(n,h') \sim (n',h')$ implies $[\alpha(h,n),hh'] = [\alpha(h,n'),hh']$,
- 3. $[\alpha(h,nn'),h] = [\alpha(h,n) \cdot \alpha(h,n'),h],$
- 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$
- 5. $[\alpha(h,1),h] = [1,h],$
- 6. $[\alpha(1,n),1] = [n,1].$

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

1.
$$(n_1, h) \sim (n_2, h)$$
 implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$,
2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$,
3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$,
4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$,
5. $[\alpha(h, 1), h] = [1, h]$,
6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{s} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

- 1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.
- Since groups always have the discrete quotient, α must be an action.

Let $N \xrightarrow{k} G \xleftarrow{e}{\leqslant} H$ be weakly Schreier, q a Schreier retraction and $\alpha(h,n) = q(s(h)k(n)).$

Then α satisfied the following properties.

1. $(n_1, h) \sim (n_2, h)$ implies $[n_1\alpha(h, n), h] = [n_2\alpha(h, n), h]$, 2. $(n, h') \sim (n', h')$ implies $[\alpha(h, n), hh'] = [\alpha(h, n'), hh']$, 3. $[\alpha(h, nn'), h] = [\alpha(h, n) \cdot \alpha(h, n'), h]$, 4. $[\alpha(hh', n), hh'] = [\alpha(h, \alpha(h', n)), hh']$, 5. $[\alpha(h, 1), h] = [1, h]$, 6. $[\alpha(1, n), 1] = [n, 1]$.

Since groups always have the discrete quotient, α must be an action.

Let E be an admissible equivalence relation on $N\times H$ and let α be a compatible action.

Theorem The set $N \times H/E$ equipped with multiplication

 $[n_1, h_1] \cdot [n_2, h_2] = [n_1 \alpha(h_1, n_2), h_1 h_2],$

is a monoid.

Theorem The diagram

$$N \xrightarrow{k} N \times H/E \xleftarrow{e}{s} H$$

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly Schreier extension.

Let E be an admissible equivalence relation on $N\times H$ and let α be a compatible action.

Theorem

The set $N \times H/E$ equipped with multiplication

$$[n_1, h_1] \cdot [n_2, h_2] = [n_1 \alpha(h_1, n_2), h_1 h_2],$$

is a monoid.

Theorem The diagram

$$N \xrightarrow{k} N \times H/E \xleftarrow{e}{s} H$$

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly Schreier extension.

Let E be an admissible equivalence relation on $N\times H$ and let α be a compatible action.

Theorem

The set $N \times H/E$ equipped with multiplication

$$[n_1, h_1] \cdot [n_2, h_2] = [n_1 \alpha(h_1, n_2), h_1 h_2],$$

is a monoid.

Theorem The diagram

$$N \xrightarrow{k} N \times H/E \xleftarrow{e}{s} H$$

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly Schreier extension.

Let E be an admissible equivalence relation on $N\times H$ and let α be a compatible action.

Theorem

The set $N \times H/E$ equipped with multiplication

$$[n_1, h_1] \cdot [n_2, h_2] = [n_1 \alpha(h_1, n_2), h_1 h_2],$$

is a monoid.

Theorem The diagram

$$N \xrightarrow{k} N \times H/E \xleftarrow{e}{s} H$$

where k(n) = [n, 1], e([n, h]) = h and s(h) = [1, h], is a weakly Schreier extension.

Let ${\boldsymbol{N}}$ be a monoid and ${\boldsymbol{H}}$ a monoid with no non-trivial left units.

Consider the quotient Q on $N\times H$ given by

 $(n,h) \sim (n',h)$ for all $n \in N$ and $1 \neq h \in H$.

This quotient is admissible and can be identified with $N \sqcup (H - \{1\})$ where

- $\bullet \ [n,1]\mapsto n$
- $[n,h] \mapsto h$ when $h \neq 1$.

Consider the quotient Q on $N\times H$ given by

 $(n,h) \sim (n',h)$ for all $n \in N$ and $1 \neq h \in H$.

This quotient is admissible and can be identified with $N \sqcup (H - \{1\})$ where

- $\bullet \ [n,1]\mapsto n$
- $[n,h] \mapsto h$ when $h \neq 1$.

Consider the quotient Q on $N\times H$ given by

 $(n,h) \sim (n',h)$ for all $n \in N$ and $1 \neq h \in H$.

This quotient is admissible and can be identified with $N \sqcup (H - \{1\})$ where

- $[n,1] \mapsto n$
- $[n,h] \mapsto h$ when $h \neq 1$.

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n,h] \cdot [n',h'] = [n \cdot \alpha(h,n'),hh'].$

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n,h] \cdot [n',h'] = [n \cdot \alpha(h,n'),hh']$.

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n,h] \cdot [n',h'] = [n \cdot \alpha(h,n'),hh'].$

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n,h] \cdot [n',h'] = [n \cdot \alpha(h,n'),hh'].$

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n, h] \cdot [n', h'] = [n \cdot \alpha(h, n'), hh'].$

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Every function $\alpha \colon N \times H \to N$ is compatible with the quotient.

Recall that $[n,h] \cdot [n',h'] = [n \cdot \alpha(h,n'),hh'].$

Because of the quotient $n \cdot \alpha(h, n')$ is irrelevant whenever $hh' \neq 1$.

When hh' = 1 this means h = 1 and so $n\alpha(h, n') = nn'$.

- $n \cdot n'$ the usual product in N,
- $h \cdot h'$ the usual product in H, and
- $n \cdot h = h \cdot n = h$

Can we relax the condition that ${\cal H}$ contain no left units?

Consider the quotient whereby

- $(n,h) \sim (n',h)$ if h is not a left unit,
- $(n,h) \sim (n',h) \Rightarrow n = n'$ if h is a left unit.

This is the coarsest admissible quotient on $N \times H$.

When does there exist a compatible action?

Can we relax the condition that ${\cal H}$ contain no left units?

Consider the quotient whereby

- $(n,h)\sim (n',h)$ if h is not a left unit,
- $\bullet \ (n,h) \sim (n',h) \Rightarrow n=n' \text{ if } h \text{ is a left unit.}$

This is the coarsest admissible quotient on $N \times H$.

When does there exist a compatible action?
Can we relax the condition that ${\cal H}$ contain no left units?

Consider the quotient whereby

- $(n,h)\sim (n',h)$ if h is not a left unit,
- $\bullet \ (n,h) \sim (n',h) \Rightarrow n=n' \text{ if } h \text{ is a left unit.}$

This is the coarsest admissible quotient on $N \times H$.

When does there exist a compatible action?

Can we relax the condition that H contain no left units?

Consider the quotient whereby

- $(n,h)\sim (n',h)$ if h is not a left unit,
- $\bullet \ (n,h) \sim (n',h) \Rightarrow n=n' \text{ if } h \text{ is a left unit.}$

This is the coarsest admissible quotient on $N \times H$.

When does there exist a compatible action?

The set L(H) of left-units of H forms a submonoid of H.

The complement $\overline{L(H)}$ of L(H) forms a right ideal.

- It is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$, then (xh)y = 1 implies that hy is a right inverse of x.

Theorem

If $\overline{L(H)}$ is a two-sided ideal, each map $\alpha : H \times N \to N$ in which $\alpha|_{L(H) \times N}$ is an action of L(H) on N, is compatible with the coarse quotient Q. Otherwise, no map α is compatible with Q.*

The set L(H) of left-units of H forms a submonoid of H.

The complement $\overline{L(H)}$ of L(H) forms a right ideal.

- It is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$, then (xh)y = 1 implies that hy is a right inverse of x.

Theorem

If $\overline{L(H)}$ is a two-sided ideal, each map $\alpha : H \times N \to N$ in which $\alpha|_{L(H) \times N}$ is an action of L(H) on N, is compatible with the coarse quotient Q. Otherwise, no map α is compatible with Q.*

The set L(H) of left-units of H forms a submonoid of H.

The complement $\overline{L(H)}$ of L(H) forms a right ideal.

- It is clear it is closed under multiplication.
- If $x \in \overline{L(H)}$ and $h \in H$, then (xh)y = 1 implies that hy is a right inverse of x.

Theorem

If L(H) is a two-sided ideal, each map $\alpha : H \times N \to N$ in which $\alpha|_{L(H) \times N}$ is an action of L(H) on N, is compatible with the coarse quotient Q. Otherwise, no map α is compatible with Q.*

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

To illustrate the general idea lets looks at this requirement

$$[\alpha(hh',n),hh'] = [\alpha(h,\alpha(h',n)),hh'].$$

If hh' is a left unit then $\alpha(hh', n) = \alpha(h, \alpha(h', n))$.

Additionally h and h' must be left units as well.

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n, n' \in N$.

We also know that lpha(x,1)=1 and so lpha(x,n)=1 for all $n\in N$

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n, n' \in N$.

We also know that lpha(x,1)=1 and so lpha(x,n)=1 for all $n\in N$

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n, n' \in N$.

We also know that lpha(x,1)=1 and so lpha(x,n)=1 for all $n\in N$

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n,n' \in N$.

We also know that lpha(x,1)=1 and so lpha(x,n)=1 for all $n\in N$

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n,n' \in N$.

We also know that $\alpha(x,1)=1$ and so $\alpha(x,n)=1$ for all $n\in N$

Otherwise, if hh' is not a left unit then things almost work completely as most of the requirements are immediately satisfied.

However suppose $\overline{L(H)}$ is not a two-sided ideal.

Then there exists $x \in L(H)$ and $y \in \overline{L(H)}$ such that $xy \in L(H)$.

The requirement

 $(n,y) \sim (n',y)$ implies $[\alpha(x,n),xy] = [\alpha(x,n'),xy]$

gives that $\alpha(x,n) = \alpha(x,n')$ for all $n,n' \in N$.

We also know that $\alpha(x,1) = 1$ and so $\alpha(x,n) = 1$ for all $n \in N$

This two sided property holds whenever \boldsymbol{H} is

- H is finite,
- *H* is commutative,
- H is a group,
- $\bullet~H$ has no inverses at all
- H is a monoid of $n \times n$ matrices over a field

The result can be generalised where $\overline{L(H)}$ is replaced with any prime ideal.

This two sided property holds whenever \boldsymbol{H} is

- H is finite,
- *H* is commutative,
- H is a group,
- $\bullet~H$ has no inverses at all
- H is a monoid of $n \times n$ matrices over a field

The result can be generalised where $\overline{L(H)}$ is replaced with any prime ideal.